Sodium currents in subthalamic nucleus neurons from Nav1.6-null mice.

نویسندگان

  • Michael Tri H Do
  • Bruce P Bean
چکیده

In some central neurons, including cerebellar Purkinje neurons and subthalamic nucleus (STN) neurons, TTX-sensitive sodium channels show unusual gating behavior whereby some channels open transiently during recovery from inactivation. This "resurgent" sodium current is effectively activated immediately after action potential-like waveforms. Earlier work using Purkinje neurons suggested that the great majority of resurgent current originates from Na(v)1.6 sodium channels. Here we used a mouse mutant lacking Na(v)1.6 to explore the contribution of these channels to resurgent, transient, and persistent components of TTX-sensitive sodium current in STN neurons. The resurgent current of STN neurons from Na(v)1.6(-/-) mice was reduced by 63% relative to wild-type littermates, a less dramatic reduction than that observed in Purkinje neurons recorded under identical conditions. The transient and persistent currents of Na(v)1.6(-/-) STN neurons were reduced by approximately 40 and 55%, respectively. The resurgent current present in Na(v)1.6(-/-) null STN neurons was similar in voltage dependence to that in wild-type STN and Purkinje neurons, differing only in having somewhat slower decay kinetics. These results show that sodium channels other than Na(v)1.6 can make resurgent sodium current much like that from Na(v)1.6 channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is resurgent Na+ current an alpha-subunit-specific property? Maybe not. Focus on "Sodium currents in subthalamic nucleus neurons from Nav1.6-null mice".

During the past quarter century Na channels have slowly but steadily revealed their kinetic complexity and diversity. Far beyond the one-trick pony of the Hodgkin-Huxley Na channel that rapidly activates and inactivates to produce action potentials, Na channels continue to display an ever-increasing variety of kinetic properties such as persistence, slow-inactivation, and most recently “resurge...

متن کامل

Production of resurgent current in NaV1.6-null Purkinje neurons by slowing sodium channel inactivation with beta-pompilidotoxin.

Voltage-gated tetrodotoxin-sensitive sodium channels of Purkinje neurons produce "resurgent" current with repolarization, which results from relief of an open-channel block that terminates current flow at positive potentials. The associated recovery of sodium channels from inactivation is thought to facilitate the rapid firing patterns characteristic of Purkinje neurons. Resurgent current appea...

متن کامل

Sodium currents in mesencephalic trigeminal neurons from Nav1.6 null mice.

Previous studies using pharmacological methods suggest that subthreshold sodium currents are critical for rhythmical burst generation in mesencephalic trigeminal neurons (Mes V). In this study, we characterized transient (I(NaT)), persistent (I(N)(aP)), and resurgent (I(res)) sodium currents in Na(v)1.6-null mice (med mouse, Na(v)1.6(-/-)) lacking expression of the sodium channel gene Scn8a. We...

متن کامل

Role of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons.

In many neuron types, the axon initial segment (AIS) has the lowest threshold for action potential generation. Its active properties are determined by the targeted expression of specific voltage-gated channel subunits. We show that the Na+ channel NaV1.6 displays a striking aggregation at the AIS of cortical neurons. To assess the functional role of this subunit, we used Scn8amed mice that are ...

متن کامل

The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study.

Purkinje neurons generate high-frequency action potentials and express voltage-gated, tetrodotoxin-sensitive sodium channels with distinctive kinetics. Their sodium currents activate and inactivate during depolarization, as well as reactivate during repolarization from positive potentials, producing a "resurgent" current. This reopening of channels not only generates inward current after each a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 2  شماره 

صفحات  -

تاریخ انتشار 2004